Equivalence Between Policy Gradients and Soft Q-Learning

نویسندگان

  • John Schulman
  • Pieter Abbeel
  • Xi Chen
چکیده

Two of the leading approaches for model-free reinforcement learning are policy gradient methods and Q-learning methods. Q-learning methods can be effective and sample-efficient when they work, however, it is not well-understood why they work, since empirically, the Q-values they estimate are very inaccurate. A partial explanation may be that Q-learning methods are secretly implementing policy gradient updates: we show that there is a precise equivalence between Q-learning and policy gradient methods in the setting of entropy-regularized reinforcement learning, that “soft” (entropy-regularized) Q-learning is exactly equivalent to a policy gradient method. We also point out a connection between Q-learning methods and natural policy gradient methods. Experimentally, we explore the entropy-regularized versions of Q-learning and policy gradients, and we find them to perform as well as (or slightly better than) the standard variants on the Atari benchmark. We also show that the equivalence holds in practical settings by constructing a Q-learning method that closely matches the learning dynamics of A3C without using a target network or -greedy exploration schedule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A short variational proof of equivalence between policy gradients and soft Q learning

Two main families of reinforcement learning algorithms, Q-learning and policy gradients, have recently been proven to be equivalent when using a softmax relaxation on one part, and an entropic regularization on the other. We relate this result to the well-known convex duality of Shannon entropy and the softmax function. Such a result is also known as the Donsker-Varadhan formula. This provides ...

متن کامل

Bridging the Gap Between Value and Policy Based Reinforcement Learning

We establish a new connection between value and policy based reinforcementlearning (RL) based on a relationship between softmax temporal value consistencyand policy optimality under entropy regularization. Specifically, we show thatsoftmax consistent action values satisfy a strong consistency property with optimalentropy regularized policy probabilities along any action sequence...

متن کامل

Reinforcement Learning by Value Gradients

The concept of the value-gradient is introduced and developed in the context of reinforcement learning, for deterministic episodic control problems that use a function approximator and have a continuous state space. It is shown that by learning the valuegradients, instead of just the values themselves, exploration or stochastic behaviour is no longer needed to find locally optimal trajectories....

متن کامل

Composable Deep Reinforcement Learning for Robotic Manipulation

Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained usi...

متن کامل

Natural Actor-Critic

This paper investigates a novel model-free reinforcement learning architecture, the Natural Actor-Critic. The actor updates are based on stochastic policy gradients employing Amari’s natural gradient approach, while the critic obtains both the natural policy gradient and additional parameters of a value function simultaneously by linear regression. We show that actor improvements with natural p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.06440  شماره 

صفحات  -

تاریخ انتشار 2017